Therapeutic algebra of immunomodulatory drug responses at single-cell resolution

Therapeutic modulation of immune states is central to the treatment of human disease. However, how drugs and drug combinations impact the diverse cell types in the human immune system remains poorly understood at the transcriptome scale. Here, we apply single-cell mRNA-seq to profile the response of human immune cells to 502 immunomodulatory drugs alone and in combination. We develop a unified mathematical model that quantitatively describes the transcriptome scale response of myeloid and lymphoid cell types to individual drugs and drug combinations through a single inferred regulatory network. The mathematical model reveals how drug combinations generate novel, macrophage and T-cell states by recruiting combinations of gene expression programs through both additive and non-additive drug interactions. A simplified drug response algebra allows us to predict the continuous modulation of immune cell populations between activated, resting and hyper-inhibited states through combinatorial drug dose titrations. Our results suggest that transcriptome-scale mathematical models could enable the design of therapeutic strategies for programming the human immune system using combinations of therapeutics.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here