Topological phases in two-legged Heisenberg ladders with alternating interactions

15 Feb 2020  ·  Ghelli Greta, Magnifico Giuseppe, Boschi Cristian Degli Esposti, Ercolessi Elisa ·

We analyze the possible existence of topological phases in two-legged spin ladders considering a staggered interaction in both chains. When the staggered interaction in one chain is shifted by one site with respect to the other chain, the model can be mapped, in the continuum limit, into a non linear sigma model NL$\sigma$M plus a topological term which is nonvanishing when the number of legs is two... This implies the existence of a critical point which distinguishes two phases. We perform a numerical analysis of energy levels, parity and string non-local order parameters, correlation functions between $x,y,z$ components of spins at the edges of an open ladder, the degeneracy of the entanglement spectrum and the entanglement entropy in order to characterize these two different phases. Finally, we identify one phase with a Mott insulator and the other one with a Haldane insulator. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Strongly Correlated Electrons High Energy Physics - Theory