Accelerating Cutting-Plane Algorithms via Reinforcement Learning Surrogates

Discrete optimization belongs to the set of $\mathcal{NP}$-hard problems, spanning fields such as mixed-integer programming and combinatorial optimization. A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms, which reach optimal solutions by iteratively adding inequalities known as \textit{cuts} to refine a feasible set. Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability. In this work, we propose a method for accelerating cutting-plane algorithms via reinforcement learning. Our approach uses learned policies as surrogates for $\mathcal{NP}$-hard elements of the cut generating procedure in a way that (i) accelerates convergence, and (ii) retains guarantees of optimality. We apply our method on two types of problems where cutting-plane algorithms are commonly used: stochastic optimization, and mixed-integer quadratic programming. We observe the benefits of our method when applied to Benders decomposition (stochastic optimization) and iterative loss approximation (quadratic programming), achieving up to $45\%$ faster average convergence when compared to modern alternative algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here