Towards Extreme Image Compression with Latent Feature Guidance and Diffusion Prior

29 Apr 2024  ·  Zhiyuan Li, Yanhui Zhou, Hao Wei, Chenyang Ge, Jingwen Jiang ·

Compressing images at extremely low bitrates (below 0.1 bits per pixel (bpp)) is a significant challenge due to substantial information loss. Existing extreme image compression methods generally suffer from heavy compression artifacts or low-fidelity reconstructions. To address this problem, we propose a novel extreme image compression framework that combines compressive VAEs and pre-trained text-to-image diffusion models in an end-to-end manner. Specifically, we introduce a latent feature-guided compression module based on compressive VAEs. This module compresses images and initially decodes the compressed information into content variables. To enhance the alignment between content variables and the diffusion space, we introduce external guidance to modulate intermediate feature maps. Subsequently, we develop a conditional diffusion decoding module that leverages pre-trained diffusion models to further decode these content variables. To preserve the generative capability of pre-trained diffusion models, we keep their parameters fixed and use a control module to inject content information. We also design a space alignment loss to provide sufficient constraints for the latent feature-guided compression module. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of both visual performance and image fidelity at extremely low bitrates.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods