Towards Geometry-Aware Pareto Set Learning for Neural Multi-Objective Combinatorial Optimization

14 May 2024  ·  Yongfan Lu, Zixiang Di, Bingdong Li, Shengcai Liu, Hong Qian, Peng Yang, Ke Tang, Aimin Zhou ·

Multi-objective combinatorial optimization (MOCO) problems are prevalent in various real-world applications. Most existing neural MOCO methods rely on problem decomposition to transform an MOCO problem into a series of singe-objective combinatorial optimization (SOCO) problems. However, these methods often approximate partial regions of the Pareto front and spend excessive time on diversity enhancement because of ambiguous decomposition and time-consuming precise hypervolume calculation. To address these limitations, we design a Geometry-Aware Pareto set Learning algorithm named GAPL, which provides a novel geometric perspective for neural MOCO via a Pareto attention model based on hypervolume expectation maximization. In addition, we propose a hypervolume residual update strategy to enable the Pareto attention model to capture both local and non-local information of the Pareto set/front. We also design a novel inference approach to further improve quality of the solution set and speed up hypervolume calculation. Experimental results on three classic MOCO problems demonstrate that our GAPL outperforms several state-of-the-art baselines via superior decomposition and efficient diversity enhancement.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods