Towards Tuning-Free Minimum-Volume Nonnegative Matrix Factorization

24 Sep 2023  ·  Duc Toan Nguyen, Eric C. Chi ·

Nonnegative Matrix Factorization (NMF) is a versatile and powerful tool for discovering latent structures in data matrices, with many variations proposed in the literature. Recently, Leplat et al.\@ (2019) introduced a minimum-volume NMF for the identifiable recovery of rank-deficient matrices in the presence of noise. The performance of their formulation, however, requires the selection of a tuning parameter whose optimal value depends on the unknown noise level. In this work, we propose an alternative formulation of minimum-volume NMF inspired by the square-root lasso and its tuning-free properties. Our formulation also requires the selection of a tuning parameter, but its optimal value does not depend on the noise level. To fit our NMF model, we propose a majorization-minimization (MM) algorithm that comes with global convergence guarantees. We show empirically that the optimal choice of our tuning parameter is insensitive to the noise level in the data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here