Hyperparameter Optimization for Unsupervised Outlier Detection

24 Aug 2022  ·  Yue Zhao, Leman Akoglu ·

Given an unsupervised outlier detection (OD) algorithm, how can we optimize its hyperparameter(s) (HP) on a new dataset, without any labels? In this work, we address this challenging hyperparameter optimization for unsupervised OD problem, and propose the first systematic approach called HPOD that is based on meta-learning. HPOD capitalizes on the prior performance of a large collection of HPs on existing OD benchmark datasets, and transfers this information to enable HP evaluation on a new dataset without labels. Moreover, HPOD adapts a prominent sampling paradigm to identify promising HPs efficiently. Extensive experiments show that HPOD works with both deep (e.g., Robust AutoEncoder) and shallow (e.g., Local Outlier Factor (LOF) and Isolation Forest (iForest)) OD algorithms on discrete and continuous HP spaces, and outperforms a wide range of baselines with on average 58% and 66% performance improvement over the default HPs of LOF and iForest.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here