Trajectory Planning Under Environmental Uncertainty With Finite-Sample Safety Guarantees

13 Aug 2021  ·  Vasileios Lefkopoulos, Maryam Kamgarpour ·

We tackle the problem of trajectory planning in an environment comprised of a set of obstacles with uncertain time-varying locations. The uncertainties are modeled using widely accepted Gaussian distributions, resulting in a chance-constrained program. Contrary to previous approaches however, we do not assume perfect knowledge of the moments of the distribution, and instead estimate them through finite samples available from either sensors or past data. We derive tight concentration bounds on the error of these estimates to sufficiently tighten the chance-constraint program. As such, we provide provable guarantees on satisfaction of the chance-constraints corresponding to the nominal yet unknown moments. We illustrate our results with two autonomous vehicle trajectory planning case studies.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here