Understanding Likelihood of Normalizing Flow and Image Complexity through the Lens of Out-of-Distribution Detection

16 Feb 2024  ·  Genki Osada, Tsubasa Takahashi, Takashi Nishide ·

Out-of-distribution (OOD) detection is crucial to safety-critical machine learning applications and has been extensively studied. While recent studies have predominantly focused on classifier-based methods, research on deep generative model (DGM)-based methods have lagged relatively. This disparity may be attributed to a perplexing phenomenon: DGMs often assign higher likelihoods to unknown OOD inputs than to their known training data. This paper focuses on explaining the underlying mechanism of this phenomenon. We propose a hypothesis that less complex images concentrate in high-density regions in the latent space, resulting in a higher likelihood assignment in the Normalizing Flow (NF). We experimentally demonstrate its validity for five NF architectures, concluding that their likelihood is untrustworthy. Additionally, we show that this problem can be alleviated by treating image complexity as an independent variable. Finally, we provide evidence of the potential applicability of our hypothesis in another DGM, PixelCNN++.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here