Unified Contrastive Fusion Transformer for Multimodal Human Action Recognition

10 Sep 2023  ·  Kyoung Ok Yang, Junho Koh, Jun Won Choi ·

Various types of sensors have been considered to develop human action recognition (HAR) models. Robust HAR performance can be achieved by fusing multimodal data acquired by different sensors. In this paper, we introduce a new multimodal fusion architecture, referred to as Unified Contrastive Fusion Transformer (UCFFormer) designed to integrate data with diverse distributions to enhance HAR performance. Based on the embedding features extracted from each modality, UCFFormer employs the Unified Transformer to capture the inter-dependency among embeddings in both time and modality domains. We present the Factorized Time-Modality Attention to perform self-attention efficiently for the Unified Transformer. UCFFormer also incorporates contrastive learning to reduce the discrepancy in feature distributions across various modalities, thus generating semantically aligned features for information fusion. Performance evaluation conducted on two popular datasets, UTD-MHAD and NTU RGB+D, demonstrates that UCFFormer achieves state-of-the-art performance, outperforming competing methods by considerable margins.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods