Universal Joint Approximation of Manifolds and Densities by Simple Injective Flows

8 Oct 2021  ·  Michael Puthawala, Matti Lassas, Ivan Dokmanić, Maarten de Hoop ·

We study approximation of probability measures supported on $n$-dimensional manifolds embedded in $\mathbb{R}^m$ by injective flows -- neural networks composed of invertible flows and injective layers. We show that in general, injective flows between $\mathbb{R}^n$ and $\mathbb{R}^m$ universally approximate measures supported on images of extendable embeddings, which are a subset of standard embeddings: when the embedding dimension m is small, topological obstructions may preclude certain manifolds as admissible targets. When the embedding dimension is sufficiently large, $m \ge 3n+1$, we use an argument from algebraic topology known as the clean trick to prove that the topological obstructions vanish and injective flows universally approximate any differentiable embedding. Along the way we show that the studied injective flows admit efficient projections on the range, and that their optimality can be established "in reverse," resolving a conjecture made in Brehmer and Cranmer 2020.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here