Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk

24 Jul 2015  ·  Obuse Hideaki, Asboth Janos K., Nishimura Yuki, Kawakami Norio ·

Quantum walks, whose dynamics is prescribed by alternating unitary coin and shift operators, possess topological phases akin to those of Floquet topological insulators, driven by a time-periodic field. While there is ample theoretical work on topological phases of quantum walks where the coin operators are spin rotations, in experiments a different coin, the Hadamard operator is often used instead. This was the case in a recent photonic quantum walk experiment, where protected edge states were observed between two bulks whose topological invariants, as calculated by the standard theory, were the same. This hints at a hidden topological invariant in the Hadamard quantum walk. We establish a relation between the Hadamard and the spin rotation operator, which allows us to apply the recently developed theory of topological phases of quantum walks to the one-dimensional Hadamard quantum walk. The topological invariants we derive account for the edge state observed in the experiment, we thus reveal the hidden topological invariant of the one-dimensional Hadamard quantum walk.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Mesoscale and Nanoscale Physics Quantum Physics