Deep Learning for Exotic Option Valuation

22 Mar 2021  ·  Jay Cao, Jacky Chen, John Hull, Zissis Poulos ·

A common approach to valuing exotic options involves choosing a model and then determining its parameters to fit the volatility surface as closely as possible. We refer to this as the model calibration approach (MCA). A disadvantage of MCA is that some information in the volatility surface is lost during the calibration process and the prices of exotic options will not in general be consistent with those of plain vanilla options. We consider an alternative approach where the structure of the user's preferred model is preserved but points on the volatility are features input to a neural network. We refer to this as the volatility feature approach (VFA) model. We conduct experiments showing that VFA can be expected to outperform MCA for the volatility surfaces encountered in practice. Once the upfront computational time has been invested in developing the neural network, the valuation of exotic options using VFA is very fast.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here