Variational inference for diffusion modulated Cox processes

1 Jan 2021  ·  Prateek Jaiswal, Harsha Honnappa, Vinayak Rao ·

This paper proposes a stochastic variational inference (SVI) method for computing an approximate posterior path measure of a Cox process. These processes are widely used in natural and physical sciences, engineering and operations research, and represent a non-trivial model of a wide array of phenomena. In our work, we model the stochastic intensity as the solution of a diffusion stochastic differential equation (SDE), and our objective is to infer the posterior, or smoothing, measure over the paths given Poisson process realizations. We first derive a system of stochastic partial differential equations (SPDE) for the pathwise smoothing posterior density function, a non-trivial result, since the standard solution of SPDEs typically involves an It\^o stochastic integral, which is not defined pathwise. Next, we propose an SVI approach to approximating the solution of the system. We parametrize the class of approximate smoothing posteriors using a neural network, derive a lower bound on the evidence of the observed point process sample-path, and optimize the lower bound using stochastic gradient descent (SGD). We demonstrate the efficacy of our method on both synthetic and real-world problems, and demonstrate the advantage of the neural network solution over standard numerical solvers.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods