The Continuous-Time Weighted-Median Opinion Dynamics

25 Apr 2024  ·  Yi Han, Ge Chen, Florian Dörfler, Wenjun Mei ·

Opinion dynamics models are important in understanding and predicting opinion formation processes within social groups. Although the weighted-averaging opinion-update mechanism is widely adopted as the micro-foundation of opinion dynamics, it bears a non-negligibly unrealistic implication: opinion attractiveness increases with opinion distance. Recently, the weighted-median mechanism has been proposed as a new microscopic mechanism of opinion exchange. Numerous advancements have been achieved regarding this new micro-foundation, from theoretical analysis to empirical validation, in a discrete-time asynchronous setup. However, the original discrete-time weighted-median model does not allow for "compromise behavior" in opinion exchanges, i.e., no intermediate opinions are created between disagreeing agents. To resolve this problem, this paper propose a novel continuous-time weighted-median opinion dynamics model, in which agents' opinions move towards the weighted-medians of their out-neighbors' opinions. It turns out that the proof methods for the original discrete-time asynchronous model are no longer applicable to the analysis of the continuous-time model. In this paper, we first establish the existence and uniqueness of the solution to the continuous-time weighted-median opinion dynamics by showing that the weighted-median mapping is contractive on any graph. We also characterize the set of all the equilibria. Then, by leveraging a new LaSalle invariance principle argument, we prove the convergence of the continuous-time weighted-median model for any initial condition and derive a necessary and sufficient condition for the convergence to consensus.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here