Paper

The Continuous-Time Weighted-Median Opinion Dynamics

Opinion dynamics models are important in understanding and predicting opinion formation processes within social groups. Although the weighted-averaging opinion-update mechanism is widely adopted as the micro-foundation of opinion dynamics, it bears a non-negligibly unrealistic implication: opinion attractiveness increases with opinion distance. Recently, the weighted-median mechanism has been proposed as a new microscopic mechanism of opinion exchange. Numerous advancements have been achieved regarding this new micro-foundation, from theoretical analysis to empirical validation, in a discrete-time asynchronous setup. However, the original discrete-time weighted-median model does not allow for "compromise behavior" in opinion exchanges, i.e., no intermediate opinions are created between disagreeing agents. To resolve this problem, this paper propose a novel continuous-time weighted-median opinion dynamics model, in which agents' opinions move towards the weighted-medians of their out-neighbors' opinions. It turns out that the proof methods for the original discrete-time asynchronous model are no longer applicable to the analysis of the continuous-time model. In this paper, we first establish the existence and uniqueness of the solution to the continuous-time weighted-median opinion dynamics by showing that the weighted-median mapping is contractive on any graph. We also characterize the set of all the equilibria. Then, by leveraging a new LaSalle invariance principle argument, we prove the convergence of the continuous-time weighted-median model for any initial condition and derive a necessary and sufficient condition for the convergence to consensus.

Results in Papers With Code
(↓ scroll down to see all results)