A Taxonomy to Unify Fault Tolerance Regimes for Automotive Systems: Defining Fail-Operational, Fail-Degraded, and Fail-Safe

This paper presents a taxonomy that allows defining the fault tolerance regimes fail-operational, fail-degraded, and fail-safe in the context of automotive systems. Fault tolerance regimes such as these are widely used in recent publications related to automated driving, yet without definitions. This largely holds true for automotive safety standards, too. We show that fault tolerance regimes defined in scientific publications related to the automotive domain are partially ambiguous as well as taxonomically unrelated. The presented taxonomy is based on terminology stemming from ISO 26262 as well as from systems engineering. It uses four criteria to distinguish fault tolerance regimes. In addition to fail-operational, fail-degraded, and fail-safe, the core terminology consists of operational and fail-unsafe. These terms are supported by definitions of available performance, nominal performance, functionality, and a concise definition of the safe state. For verification, we show by means of two examples from the automotive domain that the taxonomy can be applied to hierarchical systems of different complexity.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here